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Abstract
In the presence of a thermal gradient, macromolecular solutes or dispersed
particles drift to the cold or to the hot side: this effect is known as
thermophoresis, and is the counterpart of particle suspensions of the Soret
effect (or thermal diffusion) in simple fluid mixtures. Here I review recent
experimental results on colloid thermophoresis and present new data suggesting
a universal nature for the temperature dependence of thermophoresis in aqueous
systems. There are strong analogies between thermophoresis in liquids and
other thermally induced flow processes like gas thermal creep and membrane
thermo-osmosis; starting from these, I present some guidelines for a general
model of thermophoresis in disperse systems, accounting both for single-
particle and collective effects.

1. Introduction

The analysis of the behaviour of colloidal dispersions in external fields or in non-equilibrium
conditions may shed additional light on many features of the structural and dynamic behaviour
of disperse systems that are still just partly understood. For instance, while accurate
experimental investigation methods like scattering techniques probe colligative properties,
field-induced colloid transport properties often depend on single-particle properties, and in
particular on particle–solvent interactions; since the specific nature of the potential of the
mean force eventually stems from particle solvation properties, detailed analysis of the latter
is crucial for colloidal science.

Thermophoresis, consisting in the drift of dispersed particles driven by a thermal gradient,
is the counterpart of macromolecular solutions or colloidal suspensions of thermal diffusion
(or the Ludwig–Soret effect [1]) in simple fluid mixtures [2]. Particle thermophoresis takes
place not only in liquids but also in gases, where it has been extensively investigated due
to its important practical consequences [3]. Conversely, although preliminary investigations
were performed back in 1977 [4], particle thermophoresis in liquids has been only marginally
explored, outstanding exceptions being detailed studies of polymer solutions [5] and
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ferrofluids [6]. The potential practical impact of thermophoretic effects has been recently
marked out by brilliant experiments on DNA solutions [7], showing that thermophoresis may
concur with thermal convection in leading to patterns where the local solute concentration is
amplified up to a thousand fold.

Yet, physical understanding of thermophoresis is so far very poor. Even the direction of
particle motion looks ‘erratic’: in most cases colloids migrate towards the cold, displaying
what we shall call ‘thermophobic’ behaviour, but examples of ‘thermophilic’ motion (along
the temperature gradient) have often been reported [4, 8, 9]. In dilute suspensions (particle
weight fraction w � 1), the mass flow J can be written as J = −D∇c − cDT∇T , where
c is the particle concentration in mass per unit volume, D is the usual Brownian diffusion
coefficient, and DT is called the coefficient of thermal diffusion. In the absence of convection,
and assuming that ∇T is directed along z, Soret-coupling of heat and mass transfer leads
therefore to a steady-state concentration gradient given by

dc

dz
= −cST

dT

dz
, (1)

where ST = DT/D is called the Soret coefficient. With the present definition, ST is therefore
positive for thermophobic particle motion. It is also useful to introduce the thermal diffusion
ratio kT = (T c/ρS)ST (where ρS is the solution mass density), which is a pure number.

Here we shall exclusively deal with thermophoresis colloidal suspensions and
macromolecular solutions, although some basic concepts underlying thermally driven motion
in gases will be presented for comparison; the specific purpose of the paper will indeed be
trying to single out possible microscopic mechanisms of thermophoresis, drawing connections
to other non-equilibrium transport effects induced by thermal gradients and relating them to
basic structural aspects of inhomogeneous fluids. The paper is organized as follows:

• I shall first describe two optical methods we use to investigate thermophoresis, and review
some of the recent work recently performed by our group on macromolecular solutions
and colloidal dispersions.

• After a short discussion of thermally driven particle transport in gases, specifically
aimed to find parallels with thermophoresis in liquids, I will then try using some basic
considerations made by Derjaguin [10, 11] and Ruckenstein [12] to build a general model
for thermophoresis, which stresses the key role of particle/solvent interfacial properties in
setting the nature of single-particle thermophoretic motion.

• Finally, the single-particle model will be generalized to take into account collective
properties that, as we shall see, deeply influence thermophoresis.

2. Experimental aspects

Let me first give a short description of the two experimental techniques we use, both originally
applied by Giglio and Vendramini [4, 13] to investigate Soret effects, which we will refer to
as the beam-deflection and the thermal-lens methods.

The beam-deflection (BD) method exploits the deflection of a laser beam due to the
concentration, and therefore refractive index gradient induced by the imposed temperature
field. Suppose for instance that the combined effects of solvent thermal expansivity and
solute thermal diffusion lead to a refractive index gradient pointing downwards: the lower
portion of a planar wavefront is then delayed compared to its upper part, and the beam suffers
an overall downward deflection. Our experimental apparatus [14] consists first of all of a
thermal-diffusion cell, made of two horizontal closely spaced (0.6 mm) plates separated by
an optical-glass frame, with an optical path length of 40 mm and a sample volume of about
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300 µl. Tuning of plate temperatures is achieved using two independently controlled Peltier
modules, placed in close thermal contact with the plates. Typically, a temperature difference
�T � 0.5–1 ◦C between the initially isothermal plates is applied in a timescale of a few
tens of seconds, and kept fixed within 5 mK for up to several hours. A laser beam is mildly
focused through the plate gap, and the position of the transmitted beam is monitored by a
position-sensitive detector (PSD) with a resolution of a few µm, placed far from the cell. The
beam suffers first a very rapid downward deflection (�z)th due to the temperature dependence
of the refractive index of the solution, followed by a much slower change �zS(t) due to the
progressive build-up of the Soret-induced concentration gradient, reaching exponentially an
asymptotic limit (�z)S with a time constant τ set by the particle Brownian diffusion time over
the plate separation distance. The thermal diffusion ratio is simply determined as

kT = −T
∂n/∂T

∂n/∂w

(�z)S
(�z)th

. (2)

It is interesting to note that direct comparison of the angular displacements of the solution versus
the pure solvent yield an internal calibration with no reference to the apparatus geometry.

BD is therefore a simple, reliable, and accurate method. However, it has a major drawback:
since the plate spacing cannot be made much smaller than about 1 mm, diffusion times τ
are quite long (hours), even for particles with size in the few nm range. Measurements on
suspensions of monodisperse spherical latex particles, which are typically at least one order of
magnitude larger, are therefore precluded. All-optical methods, where laser beams are used
in concert for heating up the sample and detecting concentration gradients driven by the Soret
effect, conversely allow setting thermal gradients on very small spatial scales. Thermal lensing
(TL) [15] is a self-effect on beam propagation taking place when a focused laser beam heats
up a partially absorbing medium, generating a locally inhomogeneous refractive index profile
acting as a negative lens, which in turn increases the divergence of the transmitted beam. In
fluid mixtures or solutions, the laser-induced temperature profile also drives Soret motion,
which leads to the progressive buildup of a concentration gradient within the heated region,
acting as an additional lens-like element. This ‘Soret lens’ can be divergent or convergent
depending on the preferential direction of motion of the component having the largest index of
refraction, and as a result spreading of the transmitted beam may further increase, or conversely
lessen. However, visible lasers cannot be used to induce TL in aqueous suspensions, since
water is highly transparent through the whole visible range. Measurements of the Soret effect
by TL methods have been therefore limited to strongly absorbing mixtures, like in the original
experiments by Giglio and Vendramini [13], or have relied on adding to the suspension an
absorbing dye, which may, however, introduce some complications. The main novelty of our
apparatus is that we use a near-infrared laser, tuned to match a small vibrational overtone peak
of water. Since the focused beam has a spot of a few tens of µm, measurement timescales
are considerably shorter than for the BD method. There is, however, a specific feature of the
TL method requiring careful consideration. At variance with BD, a radially symmetric laser
beam unavoidably sets horizontal temperature gradients: this means that convection effects
are inescapable. The basic strategy to limit their effects is reducing the focused spot so that
on its spatial scale diffusion is much faster than convection, so that a safe criterium is keeping
wU/D � 1, where w is the beam-spot size and U is the typical convection velocity that
can be evaluated by balancing viscous and buoyancy forces. A detailed description of our
experimental apparatus and an extensive analysis of convective effects can be found in [16].
Here we only point out that, using our experimental configuration, the Soret coefficient of
polystyrene latex particles with radius R = 100 nm (D � 2 × 10−8 cm2 s−1) can be easily
measured with a very good degree of accuracy and reproducibility.
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Using the aforementioned methods, in the last few years we have tried to concentrate on
colloidal systems that can be regarded as ‘model’ systems to investigate the basic features
of particle thermophoresis. We shall primarily discuss the results obtained for two specific
systems, which have been selected in consideration of their well-known structural properties:

• Ionic surfactant solutions, where the surfactant micelles act as small, globular charged
particles, and the interparticle interactions, primarily of electrostatic nature, can be easily
tuned by the addition of salt.

• Protein solutions, where the potential of the mean force displays a simple, very short-
ranged attractive term that can be easily tuned by changing temperature.

The equilibrium structural and dynamic properties of SDS solutions have been studied
at length in the past. In particular, SDS micelles can be modelled as spherical aggregates of
radius R ≈ 2.5 nm, interacting via a standard DLVO potential [17]. By measuring the Soret
coefficient of charged SDS micelles, Piazza and Guarino have shown that thermophoresis
in SDS solutions has a very distinctive behaviour. In the limit of very low concentration,
ST sensibly drops by adding salt. In other words, the single-particle Soret effect strongly
increases with the electrostatic Debye–Hückel screening length λDH. However, intermicellar
interactions play a strongly conflicting role, to such an extent that even at moderately low
SDS concentration the situation gets totally reversed, and ST increases with increasing salt
concentration cS. Quantitatively, the single-particle Soret coefficient ST0 is found to scale as
the square of λDH. Collective effects show the same ionic-strength dependence as the solution
osmotic compressibility: they increase, or conversely reduce the Soret coefficient compared to
ST0 depending on the fact that intermicellar interactions are,respectively, attractive or repulsive.

Proteins in ‘salting-out’ conditions, that is in the presence of a sufficient amount of
added salt, display strongly temperature-dependent solution properties [19]. In the last few
years, lysozyme has become a kind of ‘benchmark’ for testing the basic features of the phase
behaviour of globular proteins. By measuring the Soret coefficient of hen egg-white lysozyme
solutions, Iacopini and Piazza [8] have shown a very peculiar aspect of thermophoresis in
protein solutions: particle motion can indeed be tuned from thermophobic to thermophilic
by decreasing temperature. Moreover, the absolute value of ST increases exponentially
with decreasing temperature, with a growth parameter that weakly depends on the ionic
strength. Finally, a strong correlation of ST with lysozyme equilibrium solubility was observed.
Recently [20], we have further expanded the analysis to include effects of particle charge and
of the addition of different salts, and analysed the transient effect to derive the temperature
dependence of the thermal diffusion coefficient DT, which was found to grow linearly with
temperature, showing as ST sign-reversal at a temperature that weakly depends on pH or ionic
strength.

Observing that, at variance with simple charged colloids, proteins generally display a large
exposed hydrophobic surface area, we originally tried ascribing these puzzling temperature
effects to the strong temperature dependence of hydrophobic interactions. Here, however, we
are performing measurements suggesting that a very similar behaviour is shared by a wide
class of aqueous dispersed systems, ranging from polypeptides to synthetic polyelectrolytes,
micelles and even rigid latex particles [21]. In figure 1, for instance, we show the temperature
dependence of the Soret coefficient for SDS micelles, obtained for two different surfactant
concentrations at the same value of the solution ionic strength. At variance with the results
obtained in [8] for lysozyme solutions, SDS behaviour is found to be ‘thermophobic’ in the
whole investigated temperature range (which had to be limited to T higher than the SDS
‘Kraft point’ TK � 5 ◦C, the temperature where the surfactant crystallizes out from solution).
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Figure 1. Temperature dependence of the Soret coefficient ST for SDS solutions at surfactant
concentration c = 10 g ml−1 (open dots) and c = 19 g ml−1 (full dots), in the presence of 10 mM
NaCl, fitted according to equation (3). Fit parameter values (S∞

T (K−1), T ∗ (◦C), T0 (
◦C)) are

given by [2.36, 3.8, 18.1] (c = 10 g ml−1) and [1.55, 3.0, 18.0] (c = 19 g ml−1). Curves are
rescaled in the inset by S∞

T .

However, the experimental points are fitted quite well using the same empirical function
suggested in [8]

ST(T ) = S∞
T

[
1 − exp

(
T ∗ − T

T0

)]
, (3)

with an extrapolated sign-reversal temperature T ∗ close to 3–4 ◦C. Moreover, increasing the
total surfactant concentration (and therefore the strength of repulsive intermicellar interactions)
reduces the overall amplitude of the effect, but has little effect on T ∗ and T0: this is evident
from the inset, where both curves are rescaled to their asymptotic value S∞

T . The reversal
temperature and the rate of change for ST seem therefore to be single-particle properties,
which are not influenced by interparticle interactions.

3. Intermezzo: thermophoresis in gases

Although this topic lies outside the specific purposes of the present paper, it is particularly
instructive skimming through the origin of forces on solid surfaces induced by thermal gradients
in gases. This is actually a long story, dating back to 1873,when Sir William Crookes developed
a special tool, consisting of a vertical low-friction rotor with four vanes blackened on one side
and silvered on the other, originally meant to detect light pressure (figure 2). As is well known
from basic courses on experimental physics, unless very high vacuum is made in the glass
container, the Crookes ‘radiometer’ does not live up to its purpose: it turns the ‘wrong’ way
around, with the black surfaces pushed away by the light1.

A comprehensive account of the heated debate triggered by the radiometer can be found
in the historical review by Brush [22], while a clear and still illuminating analysis of motion in
rarefied gases was made back in 1938 by Kennard [23]. Yet, unfortunately, the explanation of

1 It is interesting to notice that Maxwell himself originally accepted Crookes’ explanation in terms of radiation
pressure, but he very soon repented, as we shall see.
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Figure 2. A Crookes radiometer, spinning in the author’s living room.

this effect still presented in many books, including the Encyclopædia Britannica, is definitely
wrong. The argument goes as follows: the black side of the van heats the surrounding gas
molecule, which therefore acquire kinetic energy and ‘kick’ the black side more strongly.
Of course, this is nonsense. To have a stationary gas, we need equalization of pressure:
therefore, near the black side we have a hotter, but less dense gas, giving the same normal
component of momentum transfer to the vane. Even in the presence of convection things do
not change: convection patterns around a vertical heated surface do not display transverse
pressure gradients, and there is no pressure drop between the thermal boundary layers and
the bulk, stationary gas. Why therefore, provided that the gas pressure in the radiometer is
sufficiently low, do the vanes turn? Amendment by Maxwell came with his last paper published
in 1879 [24], where he took advantage of the seminal explanation by Osborne Reynolds of
gas ’thermal transpiration’ through porous membranes to give the correct explanation: the
radiometer turns because of tangential stresses present at the edges of the vanes2.

Let us try recasting Maxwell’s argument in modern terms. In the presence of a thermal
gradient, corrections to the equilibrium distribution f0(v) of the molecule speed (which must
be included in order to account for dissipative processes like heat transport) can be evaluated
from the Boltzmann equation. Taking x as the direction of the thermal gradient, at first order
we can write [23]

f (v) = f0[1 + Cvx(5/2 − mv2/2kBT )], (4)

where m is the molecular mass and C is a normalization constant. It is easy to show that, in
bulk, the non-equilibrium distribution (4) does not lead to longitudinal transfer of momentum.
However, let us assume that the gas is bounded by a solid planar surface S, with a temperature
gradient along the plane,and consider those molecules that lie within a mean free path λ from S.
Molecular impacts with a solid surface are not specular reflection, and the velocity distribution
after the impact will be partly thermalized: although exact expressions for what is called the

2 Actually, the publishing of Maxwell’s paper was a sort of casus belli. Maxwell had been the referee of Reynolds’
paper: unfortunately, publication of the latter was delayed, and followed Maxwell’s work. Reynolds, obviously, did
not like it. Today, luckily, such things never happen...
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‘accommodation coefficient’ are not easily evaluated, and depends on the specific model for
the surface, there is in any case a partial transfer of momentum to the wall. Yet, molecules
coming from the hot side carry more momentum than those coming from the cold,and therefore
a net longitudinal momentum transfer takes place. This mechanism, besides accounting for
Crookes radiometer motion (although, clearly, quantitative evaluation is hard) and explaining
gas ‘thermal creep’ in pores, can be invoked for giving a first semi-quantitative explanation of
particle thermophoresis in gases, an effect originally discovered by Tyndall [25]. In the near-
continuum limit (the situation is very different in the extremely dilute, or ‘Knudsen’, regime),
a first solution was given by Epstein [26], who calculated a particle thermophoretic velocity
for a particle with thermal conductivity κP, embedded in a gas having thermal conductivity κg

and number density ρ.

vth = 3η

2ρT

(
κg

2κg + κP

)
∇T0, (5)

where m is the molecular mass and the term in bracket accounts for the particle-induced
modification of the externally imposed gradient ∇T0. By relating the gas viscosity to the mean
free path via η = (m/2kBT )1/2 pλ = (m/2kBT )1/2ρkBTλ, we have

vth =
√

9kB

8mT
λ

(
κg

2κg + κP

)
∇T0, (6)

showing that the thermophoretic velocity is proportional to λ (so that, as we stated previously,
the effect is more relevant at low pressure). The Epstein approach was further refined by
other researchers to include higher order terms, which extended the solutions from the near-
continuum to the full Knudsen regime [3]. Although we cannot dwell more on the latter rather
complex subject, it is useful for what follows to stress some key aspects of the Reynolds–
Maxwell mechanism:

• The gas exerts on the surface (or vice versa) a tangential stress. In a continuum description,
this corresponds to having a pressure tensor near the surface which is anisotropic in the
direction of the thermal gradient.

• The inhomogeneous gas region where the velocity distribution differs from the equilibrium
value is confined within a surface layer with a thickness of the order of λ: the mean free
path acts therefore as a characteristic length scale controlling the amplitude of the effect.

• From a macroscopic point of view, thermophoresis can be seen as an effective slip of the
particle, that is a violation of the hydrodynamic stick boundary condition confined within
a mean free path from the surface.

• Particle bulk properties enter the problem only through the thermal conductivity κP that,
in relation to κg, yields the local distortion of the temperature field.

As we shall see, these points bear a strong resemblance to the analogous features of particle
thermophoresis in liquids.

4. ‘Phoretic’ transport phenomena in liquids

We have, first of all, to stress a basic distinction between two different kinds of colloid transport
phenomena in external fields. In the first case, the field couples directly to the particle acting
as a volume force, gravitational sedimentation being the simplest example. However, let us
consider electrophoresis, namely the transport of charged colloids induced by an external
electric field. The particle is surrounded by the small ion double-layer, extending up to a
distance from the particle surface which is of the order of the Debye–Hückel screening length
λDH: therefore, when observed over hydrodynamic length scales, which are generally quite
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larger than λDH, no net electric force is applied to the particle/double-layer system, which
appears overall neutral. In addition, if the field is sufficiently weak, distortion (polarization) of
the double-layer is negligible, and the counterion/coion cloud retains its zero-field distribution.
Why, then, do the particles move? The driving force stems from a relative motion of the fluid
with respect to the particle that is localized within the double-layer. Since the double-layer,
which we shall call the ‘internal region’ of the fluid, is very thin, on the hydrodynamic scale
this relative motion may be described as a ‘slip’ of the fluid on the particle surface. In other
words, the existence of a diffuse interface (the internal region) between the fluid and the solid
surface can be represented as an effective violation of the no-slip condition.

This peculiar coupling is therefore basically an interfacial stress effect, and is responsible
for what we shall call, in general, phoretic motion [27]. Calculation of the flow-field proceeds
therefore in principle by determining the flow in the internal region, evaluating the slip at the
particle surface, and plugging it as an effective boundary condition in the Navier–Stokes
equations. It is evident therefore that phoretic effects directly probe the particle–solvent
interactions: the presence of the particle surface, acting as an effective external field, modifies
the local structure of the solvent structure in the interfacial region. In a continuum picture,
as we shall see, this effect can be described as the onset of interfacial tension gradients
driving the particle motion; phoretic effects for a solid particle surrounded by a diffuse fluid
interface are therefore similar to ‘Marangoni’ effects taking place at a sharp macroscopic fluid–
fluid interface (in particular thermophoresis could be seen, as we shall discuss, as a kind of
microscopic thermocapillary effect).

Actually, phoretic effects are not necessarily associated with the presence of a ‘real’
external field: conversely, colloidal motion driven by interfacial stresses can also be brought
about by gradients of thermodynamic quantities. For instance, charged colloid motion can be
induced by concentration gradients of electrolytes as in dielectrophoresis, by pH gradients for
particle with basic or acidic surface groups, or in general by the inhomogeneous distribution
of low-molecular weight solutes: all these phenomena (which can collectively be named
‘diffusiophoretic’ effects) can be described using concepts that are very similar to those we
have just introduced. Thermophoresis, as we shall see, is another (and probably simpler)
example. Conceptually, however, the situation is very different. While for electrophoresis
interfacial stresses come out as the overall effect of well defined electric forces on each single
component (particle and small ions), here we are considering non-equilibrium systems where
no ‘external field’ coupling with the particle or the low molecular weight components is present.
The key question about phoretic motion driven by thermodynamic gradients is therefore: can
we ‘map’ our non-equilibrium suspension onto an ‘effective’ equilibrium system subjected to
an appropriate ‘fictitious’ external field? For the specific case of thermophoresis, this means
‘translating’ the effect of the thermal inhomogeneity of the solvent into an effective mechanical
disturbance inducing particle flow, eventually balanced by the usual osmotic flow to yield a
steady-state concentration gradient.

5. Towards a general model of thermophoresis

Let me first state explicitly the framework and limitations of the model I shall present in what
follows. The analysis will be strictly limited to particle/solvent interaction with a range much
smaller than the particle size. The ‘internal region’ we shall try to characterize is therefore very
thin, so that on its scale the particle surface appears as flat. This greatly simplifies the approach,
allowing the extraction of information on particle thermophoresis from other flow effects taking
place for a thermally inhomogeneous liquid bounded by solid surfaces. So far, ‘curvature’
effects due to finite particle size proved indeed much harder to be included: unfortunately, as
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Figure 3. Schematic geometry for the calculation of the thermo-osmotic effects in the model
presented in [11].

we are presently finding for latex particles at very low ionic strength (λDH 	 R), these effects
seem to be much stronger than in the case of electrophoresis.

5.1. The Derjaguin approach to thermo-osmosis and thermophoresis

At variance with what has been done for electrophoresis and diffusiophoresis, very limited
theoretical work has so far been done on thermophoresis in liquids. The only existing general
model of particle transport in thermal gradients is due to Derjaguin and Sidorenkov [10, 11],
who tackled the problem of thermophoresis (or, more precisely, thermo-osmosis, i.e. thermally
driven flow of liquids near solid surfaces) by considering the reciprocal mechano-caloriceffect,
namely the buildup of thermal gradients due to fluid flow in capillary pores, using then Onsager
reciprocal relations. Let us briefly recall the main steps of their derivation of the thermophoretic
velocity. Consider the fluid flow through a straight capillary of length l with a rectangular cross-
section, connecting two reservoirs R1 and R2. We shall assume that pressure and temperature
differences�P ,�T are externally imposed between the reservoirs and, to simplify calculation,
we shall take the capillary height 2d much smaller than its width D (see figure 3).

The fluid-volume and heat flows, JV (in m3 s−1) and JQ (in J s−1), may be written in terms
of generalized forces as:

JV = β11�P + β12
�T

T

JQ = β21�P + β22
�T

T

(7)

where the coefficients β12,21 yield the amplitude of the cross-flows. Suppose now that, due
to interactions with the pore walls, the fluid structure in the pore differs from the bulk: in
particular, we write the local specific enthalpy as h0 + �h(z), where h0 is the bulk value.
When �T = 0, the excess heat flow through any section AA′ in the capillary (yielding at
steady state a temperature difference between the reservoirs) is given by:

WAA′ = h0 JV + D
∫ d

−d
�h(z)v(z) dz (8)

where v(z) is the fluid velocity in the pore. Taking for the latter a Poiseuille form v(z) =
(z2 − d2)�P/ηl we get

β21 = D

ηl

∫ d

−d
�h(z)(z2 − d2) dz = β12, (9)

where the last identity is a consequence of Onsager reciprocity relations. Expression (9) can
be simplified by taking into account that the thickness of the internal region δ is much smaller
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than h and linearizing the Poiseuille velocity field in the distance z′ from the wall, obtaining

β12 = −2S

ηl
h1 (10)

where S = 2Dd is the capillary cross-section, and

h1 =
∫ δ

0
�h(z)z dz (11)

is the first moment of the distribution of the excess enthalpy in the internal region. The slip
velocity is than simply obtained dividing JV by the capillary cross-section

vs = −2
h1

ηT
∇T, (12)

where ∇T = �T/ l is the temperature gradient. Obviously, provided that the fluid
inhomogeneous region is thin compared to the particle size, the steady-state thermophoretic
velocity acquired by a particle driven a thermal gradient in a stationary fluid is simply given
by vth = −vs.

The thermophoretic velocity can also be written as

vth = 2
hs


ηT
∇T, (13)

where hs ≡ ∫ δ
0 �h′(z) dz is the excess enthalpy per unit surface, and 
 ≡ h−1

s h1 is a
characteristic length scale. The latter expression allows for a simple qualitative understanding
of the thermophoretic behaviour. When the colloid–particle interactions are attractive (the
particle surface is ‘lyophilic’), so that the excess enthalpy in the internal region is everywhere
negative, the particle diffuses to the cold; conversely, for repulsive fluid–surface interactions
(‘lyophobic’ colloids), a thermophilic behaviour is expected. The situation is slightly more
complicated if the excess enthalpy in the internal region has not everywhere the same sign
(for instance, when the particle/wall interactions are repulsive at short range and attractive at
longer distance, or vice versa). Here 
, which in the former case is positive definite, may be
negative as well, and can even switch sign if the range of one of the two terms in the surface
interaction potential changes, for instance, with temperature.

The close relation between thermo-osmosis and thermophoresis is given further support by
considering the experimental evidence collected many years ago by Haase and De Greiff [29]
The experiment consists in measuring the steady-state pressure difference �P between
two reservoirs kept at different temperatures and separated by a porous membrane, and
calculating from it the ‘heat of transport’, which in our notation is given by Q∗ = β12/β11 =
−T (�P/�T )JV =0, and should therefore be proportional to the slip velocity vs (or to −vth).3

In particular, Haase and De Greiff measured the dependence of Q∗ on the average system
temperature for water transport through cellophane membranes, which is shown (with reversed
sign) in figure 4. Resemblance with the experimental results in [8] for the temperature
dependence of the Soret coefficient (and therefore the thermophoretic velocity) for lysozyme
solutions is striking: not only does −Q∗ change in sign from negative to positive by increasing
T , but its functional dependence on T can be fitted over the whole investigated range using an
empirical expression which is identical to that proposed for thermophoresis by Iacopini and
Piazza:

Q∗(T ) = Q∗
∞

[
exp

(
T ∗ − T

T0

)
− 1

]
, (14)

3 Notice, however, that this method works better for small β11, that is for thin pores, where the approximation used
to derive (10) is no longer valid.
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Figure 4. Heat of transport of water through cellophane membranes as a function of the mean
system temperature (after [29]). The full curve is a fit with the empirical expression used by
Iacopini and Piazza for the temperature dependence of the Soret coefficients in protein solutions.

where Q∗∞ represents a high-T limit, T � 57 ◦C is the temperature where the heat of transport
switches sign, and T0 embodies the strength of temperature effects. It is also interesting to
point out that the characteristic energy scale kBT0 has the same order of magnitude found for
thermophoresis, namely about 15% of the thermal energy.

A note of caution concerns, however, the correct interpretation of the excess enthalpy
term. Equation (10) comes from the evaluation of integrated flows (along the full length of the
capillary) using an approach which is typical for discontinuous systems. In a later analysis of
thermo-osmotic flow in semipermeable membranes, Dariel and Kedern [28] pointed out that
the total heat of transport can be written as Q∗ = Qm +�H s, where Qm is the effective heat
transported within the membrane and �H s is an additional contribution due to the enthalpy
of fluid transfer from the bulk to the pore (or, equivalently, to the excess enthalpy originating
from immersing the membrane in the fluid). To reach this conclusion, Dariel and Kedern start
from the local flux equations at a given cross-section of the pore, which can be written as

Jm = l11

(
dµ

dx

)
T

+
l12

T

dT

dx

Jq = l21

(
dµ

dx

)
T

+
l22

T

dT

dx

(15)

where Jm is the mass flow (in moles per unit time) across a given section of the capillary,
and (dµ/dx)T is the chemical potential gradient at constant T within the pore. Using this
local form of the coupled-flow equations, Onsager reciprocal relations yield l12 ≡ l21. By
integrating equations (15) along the capillary, and carefully considering boundary conditions
(in particular matching of the chemical potential difference between the reservoirs, obtained
either by direct balance or by integrating (15)), Derjaguin equations (15) are retained provided
that (equation (27) by Dariel and Kedern, in our notation)

β12 = β21 −�H sVml11/ l (16)
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where Vm is the fluid molar volume. Taking into account that, in isothermal conditions, the
volume flow is given by JV = (l11Vm/ l)�p, the second term on the rhs of equation (16) is easily
seen to correspond to a flux of enthalpy taken up at R1 and released at R2, without contributing
to the homogeneous energy transfer within the pore (this occurrence of excess surface terms in
passing from continuous to discontinuous flow equations is discussed at length in [28]). The
author must confess that his own acquaintance with membrane-exchange thermodynamics is
too limited to judge whether this conclusion is correct, but the argument is sound. From a
practical point of view, this observation simply means that the excess enthalpy due to the
creation of the interface should not be included in equation (11) so that we must consequently
write

h1 =
∫ δ

0
�h′(z)z dz (17)

where �h′(z) = �h(z) − �h0(z) and �h0(z) is the distribution of the isothermal excess
enthalpy in the internal region.

5.2. Interfacial tension and phoretic motion

A step forward can be made by drawing a connection between phoretic effects and the interfacial
thermodynamic properties expressed in terms of a macroscopic interfacial tension γ . Let us
first observe that, for the specific case of thermophoresis or thermo-osmosis, the enthalpy
per unit surface appearing in (13) should be regarded as the excess part with respect to the
condition of zero thermal gradient. In the presence of a bounding surface of area S, a simple
thermodynamic relation links the enthalpy H of the fluid to the interfacial tension γ

H = H0 +

(
γ − T

dγ

dT

)
S. (18)

Besides the bulk term H0, the first term in brackets corresponds to the excess enthalpy due
only the presence of the wall, even in the absence of a temperature gradient. If the observation
made in [28] is correct, this term should consequently be discarded. Therefore, the only excess
contribution per unit surface due to �T is

hs = −T
dγ

dT
, (19)

yielding a thermophoretic velocity

vth = −2


η
γ ′(T )∇T = −2


η

dγ

dx
, (20)

where γ ′(T ) = dγ /dT and x is the coordinate along the interface. Connection between
gradients of the interfacial tension and phoretic motion is, however, very general [27]. It
is indeed well known that fluid pressure near an interface is no longer isotropic. For a flat
interface, the pressure tensor has only two independent terms: the normal component pN,
coinciding everywhere with the bulk pressure, and a tangential component pT(z), where z is
the distance from the substrate, smaller than pN and often negative (i.e. a tangential tension).
The interfacial tension is simply given (this is almost a definition of γ ) by [30]

γ =
∫ ∞

0
dz [pN − pT(z)] . (21)

Now, in the presence of a gradient of a thermodynamic quantity, like for instance temperature,
pT will vary along the interface. In stationary conditions, we can write the balance of pressure
and viscous shear stresses as

∂σzx

∂z
+
∂P∗

∂x
= 0, (22)
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where P∗(x, z) = pN − pT(x, z). Using (21), the total stress discontinuity τ through the
internal region, driving phoretic motion, is therefore given by:

τ = σzx (+∞)− σzx(0) = −dγ /dx . (23)

Once the dependence of P∗ on the inhomogeneous thermodynamic parameter is known, the
slip velocity can therefore be evaluated by integrating twice (22) and evaluating the velocity
field at the outer boundary of the internal region (it should be noted that, due to the thinness
of the internal region, the velocity field reaches its asymptotic value rather fast [27]).

5.3. Ruckenstein model for thermophoresis of charged colloids

The considerations made in the former section give firmer bases to a clever intuition by
Eli Ruckenstein about the general mechanism of phoretic motion in suspensions of charged
colloids [12], later exploited and extended by Piazza and Guarino to explain the general features
of thermophoresis in charged micellar solutions [18]. In his seminal paper,Ruckenstein notices
that, in the limit of a thin double-layer, the electrophoretic velocity vE along z for a colloidal
particle with surface charge density σ and surface potential ψs can be written as

vE = −λD H

η

dγ

dz
, (24)

where η and ε are the solvent viscosity and dielectric constant, and 
 is a characteristic length,
which in the Debye–Hückel limit (ψs/kBT � 1) coincides with λD H . The interfacial tension
γ between particle and solvent can be calculated from the work needed to build up the double-
layer [31]

γel = −
∫ ψS

0
σ dψ. (25)

Within the same limit of low surface potential, σ = (ε/4πλDH)ψS, so that

γel = −εψ2
s /8πλDH. (26)

By simultaneously solving the Navier–Stokes and Gibbs adsorption equations,
Ruckenstein then shows that an expression similar to (24) holds for diffusiophoresis and
thermophoresis as well, provided that we choose 
 = λDH/2 and that dγ /dz is appropriately
related to the presence of chemical or temperature gradients.

Piazza and Guarino suggested that the same approach may also be used for higher surface
potentials, provided that the effective (or renormalized) charge Zeff [32] is substituted for the
bare charge Z . In physical terms, this amounts to assuming that the ‘condensed’ counterions
are so strongly bound to the particle surface that they do not participate in the slip motion of
the internal region, or equivalently, that the ζ -potential (the electrostatic potential at the ‘plane
of shear’) is of the order of kBT . If this ansatz holds true, the Soret coefficient can then be
easily found by calculating the thermophoretic velocity vth and setting to zero the net particle
flux J = ρvth − D0∇ρ, where ρ is the colloid number density, obtaining

ST = SNE
T +

3πlB Z 2

4T R3
λ2

DH, (27)

where R is the particle radius, lB is the Bjierrum length, and a possible additional contribution
SNE

T to ST due to particle–solvent interactions of non-electrostatic nature has been added to
the electrostatic term. Equation (27) accounts therefore for the observed scaling of the Soret
coefficient with the square of λDH. In addition, if we evaluate the amplitude of the quadratic
term by using a ‘dressed’ micellar radius R = 3.5 nm and the effective charge value Zeff ≈ 17
obtained in [33], equation (27) closely fits the data obtained for SDS micelles.
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Equation (27), however, should be valid only when λDH is not too large compared to the
particle size. In the case of SDS micelles, the screening length cannot be made too large due
to the screening effect of free, non-micellized surfactant, present at a residual concentration
approximately equal to the critical micellar concentration (cmc): since the cmc can be as large
as 8 g l−1 in the absence of added salt, this effect is far from being negligible. Preliminary
data obtained with the TL method on strongly interacting polystyrene latex spheres show that
at very low ionic strength the situation could be much more complicated, showing even a
reversal in sign of the Soret coefficient. This feature is actually predicted by a more elaborate
analysis of charged colloid thermophoresis [34]. However, the latter model requires extensive
and rather cumbersome numerical calculation, and does not yield any simple physical intuition
of the origin of ST sign reversal.

5.4. ‘Thermal force’ and bulk effects

Both the general model we developed from the Derjaguin approach in section 5.2 and the
specific suggestion made by Derjaguin yield a thermophoretic velocity scaling as vth =
−(
/η)γ ′(T )∇T , where the characteristic length scale 
 is related, according to the previous
discussion, to the solvent structure in the internal region, and eventually to the specific particle–
solvent interactions. This expression for vth simply corresponds, however, to the stationary
velocity that a particle of radius R would attain in the presence of an ‘effective external field’

Fth = −A
γ ′(T )∇T (28)

where A is a dimensionless constant. Fth plays therefore the role of the ‘thermal force’ we
were looking for.

Expression (28) confirms that the Soret effect is essentially related to interfacial properties:
we may wonder, however, whether bulk particle properties have any effect on thermophoresis.
As a matter of fact, bulk properties modify indeed the local thermal gradient: due to the formal
identity of the constitutive equations, the temperature profile around a particle having thermal
conductivity κP, embedded in a solvent with thermal conductivity κS, can be directly evaluated
by analogy with the problem of the electric polarization of a non-conductive particle immersed
in a dielectric [35], obtaining

∇T (r) =
[

1 − κP − κS

κP + 2κS

( r

R

)3
]

∇T0, (29)

where ∇T0 is the unperturbed, externally imposed thermal gradient and r is the distance from
the particle centre, so that the effective thermal gradient at the particle surface is simply rescaled
to ∇T (R) = 3κS/(κP +2κS)∇T0. The amplitude A of the thermal force in (28) should therefore
be proportional to 3κS/(κP +2κS) (exactly as in Epstein’s solution for thermophoresis in gases),
being particularly large for highly thermally conductive solvents.

6. Collective effects

So far we have neglected any effect colloidal interparticle interactions and limited our analysis
to single-particle effects. However, the chance of ‘translating’ the thermal gradient into an
effective external ‘driving force’ given by (28) allows for a simple generalization of the model
to take into account collective effects. Without Fth, steady-state would be reached when the
osmotic pressure� as a function of the local temperature and concentration, is constant along
the cell (this is a simple consequence of the McMillan–Mayer theory for dilute solutions,
since � takes the place of the hydrostatic pressure, which must be uniform in mechanical
equilibrium). In the presence of the thermal force, the ‘hydrostatic’ balance is given by

∇� = −A
ργ ′(T )∇T (30)



‘Thermal forces’: colloids in temperature gradients S4209

where ρ is the local particle number density. Expanding�, we simply obtain

dρ

dT
= −

(
∂�

∂ρ

)−1 [
−A
ργ ′(T )∇T +

∂�

∂T

]
, (31)

so that the Soret coefficient can be directly expressed as

ST = − 1

ρ

dρ

dT
= KT

[
−A
Rργ ′(T ) +

∂�

∂T

]
(32)

where KT = ρ(∂�/∂ρ)−1 is the osmotic compressibility of the suspension. Interactions
therefore contribute to thermophoresis both by setting the overall amplitude, which is fixed by
KT, and by adding a collective term, related to the temperature derivative of�. Proportionality
with the osmotic compressibility, which is consistent with the data obtained for SDS in [18],
has a simple physical meaning: repulsive interactions, lowering KT, hinder the buildup
of thermally induced concentration gradients, while the contrary happens for attractive
interactions. Equation (32) shows that ST depends only on equilibrium properties; since
the Soret coefficient is the ratio of two transport coefficients, hydrodynamic factors are indeed
expected to cancel out. Notice also that, without the driving force Fth, in the single-particle
limit we would obtain ST = 1/T , regardless of the specific nature of the investigated system.
In addition, thermophoresis would be only a negligible O(T −1) effect, while most of the
data for ST in macromolecular solutions or colloidal suspensions are at least one order of
magnitude larger. This blatant contradiction with the experimental findings was pointed out
by Soret himself while considering the explanation of thermal diffusion originally put forward
by van’t Hoff [36], who simply assumed uniformity of the osmotic pressure along the cell.
Unfortunately, neglect of careful consideration of single-particle effects can still be found in
recent papers on thermophoretic effects. Dhont for instance, in spite of an accurate analysis
of collective effects on colloid thermophoresis, both from a statistical thermodynamics [37]
and a microscopic hydrodynamics point of view [38], introduces a possible single-particle
contribution only ‘in passing’, as an effect related to the temperature dependence of the particle
chemical potential, without envisaging a physical driving force. Conversely, we have seen that
single-particle effects constitute, in terms of magnitude, the core part of the Soret coefficient. I
should point out, however, that Dhont’s expressions for DT and D (equation (27) in [37]) yield
the same collective contribution to ST as in the present derivation. Similarly Chapman, in his
original discussion of Brownian motion in thermal gradients [39] (where no effective external
force on the particle was introduced) was not able to account for thermophilic behaviour. A
recent critical reappraisal of the problem by Bringuier and Bourdon [40] does take into account
interactions of the particle with its surroundings, and might give statistical mechanics bases to
the present semi-phenomenological approach, but its results seem so far to be easily applicable
only to (according to the authors’ definition) ‘toy models’.

7. Conclusions

Let me first summarize the key features of the approach I have followed.

• First of all, understanding thermally driven diffusion might be much simpler for colloidal
suspensions or macromolecular solutions (in other words, what are commonly called
‘complex’ fluids) than for ‘simple’ liquid mixtures, the crucial reason being the wide
separation of particle and solvent length scales, allowing the treatment of the latter as a
continuum and using hydrodynamics.

• The main difference between an equilibrium flow problem, in the presence of a body
external force, and phoretic motion is the need for introducing slip boundary conditions,
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dictated by the thin inhomogeneous interfacial layer induced by the particle acting on the
fluid as an external field. This feature directly links thermophoresis to the analysis of
liquid structure near interfaces.

• In spite of the different energy transfer mechanism (which in gases is simply kinetic),many
similarities exist between thermophoresis in liquids and gases: stresses are longitudinal,
a characteristic length (λ for gases, 
 for liquids) fixes the strength of the effect; the bulk
particle properties enters only via the thermal conductivity.

• It is possible to ‘translate’ the thermal inhomogeneity into an effective external force
acting on the particle, easily allowing the extension of the results to interacting particles.
It is interesting that such a force is proportional to a simple interfacial thermodynamic
property as the temperature derivative of γ . Therefore, if the ansatz we made holds true,
thermophoresis might be considered as an interesting probe of particle/solvent interfacial
properties.

• For the specific case of charged colloids at sufficiently high ionic strength (λDH � R),
the model leads to analytical predictions in agreement with the experimental results for
micellar systems.

Therefore, although they do not constitute yet a rigorous microscopic model of particle
thermophoresis in liquids, the general ‘guidelines’ we have developed in the former sections
represent a tool for guessing a possible microscopic interpretation of many of the experimental
observations on specific systems. For instance, in the framework of the general model I have
tried to outline, sign-reversal from ST < 0 to ST < 0 by raising T should imply, from (32), a
maximum of the particle/solvent interfacial tension at intermediate temperature (unless more
subtler effects, leading to a sign-reversal of 
, are present). Since, as I anticipated, this
behaviour seems to be shared by a large number of aqueous systems, this feature should
be related to general structural properties of water.

I stress again that all ideas that have been presented are restricted to situations where
the thickness of the interfacial region is small compared to the particle size; in this case, the
thermophoretic velocity should not depend on the particle size R, and the Soret coefficient
should scale linearly with R. Explanation of the sign-reversal of ST in charged systems for
large values of the screening length is therefore precluded from the present model, and requires
further consideration of curvature effects or, possibly, of interparticle interactions.

Finally, it would be interesting to investigate how this approach can be applied to polymer
thermophoresis. Short-ranged coupling with the thermal field is indeed implicit both in the
original argument leading to a molecular-weight independent DT [41] (which seems to hold
true also for short chains, in spite of foreseeable end effects [42]) and in the detailed analysis by
Schimpf and Giddings [43]. One may for instance wonder whether for flexible polyelectrolytes
at sufficiently low ionic strength, where strong inter-monomer charge coupling is expected,
the latter feature is still retained.
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